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Introduction

Task Setup

Despite increasing model scale and the use of Col prompting [1, 2, 3], LLMs still struggle
with consistent reasoning. We build on DeepSeek-R1 and Group Relative Policy Opti-
mization (GRPO) [4, 5], applying logprob-based rewards to train models based on internal
confidence rather than task-specific rules. We use the Qwen3-1.7B model for all exper-
iments, selected for its strong reasoning potential and reliable adherence to structured
output formats. Our method generalizes across domains—structured symbolic math and
open-ended poetry—without handcrafted evaluators.

Reward Mechanisms

Structured Output Format. Each model response is formatted as:
<think>Reasoning </think><answer>Final answer </answer>

Format Reward. All training runs include a binary Format Reward that checks for
correct use of <think> and <answer> tags.

Rule-Based Rewards. Task-specific evaluators provide interpretable and targeted
feedback:

= Math: Evaluates use of input numbers and exact correctness of the final result.
= Poetry: Combines rhyme, syllable count, form classification, and semantic
similarity.

Logprob-Based Rewards. Used as a domain-agnostic signal based on model confi-
dence. For prompt p, reasoning r, and gold answer a:

N
1
R=log P(a|p,r),b= N;bgmai | p,ri),A=R—b

This reward encourages reasoning traces that make a more likely, independent of the
model’'s own answer.

Logprob Reward Normalization

We evaluate models on two distinct reasoning tasks:

Math Task (Structured Reasoning): Given 4 numbers and a target, the model must
produce a valid arithmetic expression using each number exactly once to reach the
target. Outputs are evaluated for correctness and reasoning trace structure.

Poetry Task (Creative Reasoning): Given the beginning of a poem (with author, title,
and form), the model must generate a stylistically consistent and semantically coher-
ent ending. Outputs are evaluated using rhyme, syllable count, form adherence, and
embedding similarity to the gold ending.

Results & Evaluation Overview

Logprobs are negative and scale with sequence length. This introduces bias, especially
in tasks like poetry where gold answer lengths vary.

= Length Normalization: Average the total logprob over the number of tokens in the
gold answer.
= Exponentiation: Convert normalized logprobs to [0, 1] reward scale via exp(-).

Batch-Level Normalization: Using batch size 64, we apply:

= Z-Score: Mean-center and scale to highlight outliers early in training.
= Min-Max: Rescale to [0, 1] to emphasize strong vs. weak generations throughout
training.

Finding: Min-max + length normalization yields the most stable reward progression
across training.

Failure Case: Without length normalization, the model exploited reward structure by
producing repeated <think> blocks without valid answers—optimizing logprob while
ignoring format. We constrained generations to one <think></think> block to miti-
gate this.

Custom GRPOTrainer: Reasoning-Aware Masking

The default GRPO loss aggregates token-level advantages over the entire output se-
guence. However, in our logprob-based reward setup, the reward is based only on the
reasoning trace—not the generated answer. Including tokens beyond the </think>
tag introduces noisy gradients, especially when incorrect answers are predicted con-
fidently.

Key Moadification. We implement a CustomGRPOTrainer that masks out all tokens
following the final reasoning step. Only tokens up to the end of the reasoning trace
are used in the loss computation.
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Explanation:

= o=": output truncated before the end of the reasoning (</think>).
. fl@-,t: token-level advantage.

= g(e, -): PPO-style clipping function.

= Dyi[ma || mref]: KL penalty to stabilize updates.

This design ensures alignment between training signals and logprob-based rewards by
focusing optimization on the reasoning trace only.

We compare rule-based and logprob-based GRPO across math and poetry tasks. While
both reward schemes improve over the baseline, rule-based GRPO consistently achieves
the best scores—even in poetry—thanks to its strict format alignment and targeted feed-
back.

Logprob-based GRPO, though slightly behind in benchmarks, showed robust learning
dynamics and produced stylistically coherent outputs. Its reward structure—based on
model confidence rather than handcrafted rules—encourages flexible reasoning patterns.

We believe logprob-based rewards are especially promising for more creative tasks, such
as storytelling, dialogue generation, or speculative writing, where rigid correctness is
ill-defined. In such contexts, diversity and coherence matter more than exact match,
making logprob-guided learning a more natural fit.
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Benchmark Evaluation Scores

Model Math Score | Poetry Score
Baseline 0.009 0.000
Rule-based GRPO 0.449 0.091
Logprob GRPO 0.301 0.046
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